Home
Class 11
MATHS
Lim(x rarr-1)(x+1)/(sqrt(x^(2)+3)-2)=...

Lim_(x rarr-1)(x+1)/(sqrt(x^(2)+3)-2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr1)(x-1)/(sqrt(x^(2)+3)-2)

lim_(x rarr1)((x-1)/(sqrt(x^(2)-1)+sqrt(x-1)))=

lim_(x rarr1)(1-x^(3))/(2-sqrt(x^(2)+3))=?

lim_(x rarr 1)(x-1)/(sqrt(x+3)+2)=

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

lim_ (x rarr1) ((2x-1) (sqrt (x) -1)) / (2x ^ (2) + x-3)

lim_(x rarr0)(x+ln(sqrt(x^(2)+1)-x))/(x^(3))

lim_(x rarr1)(sqrt(x)+3)

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)