Home
Class 13
MATHS
" 6."quad sin^(2)A+sin^(2)B+sin^(2)C=2+2...

" 6."quad sin^(2)A+sin^(2)B+sin^(2)C=2+2cos A cos B cos C

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

In a /_ABC,sin^(4)A+sin^(4)B+sin^(4)C=(3)/(2)+2cos A cos B cos C+(1)/(2)cos2A cos2B cos2C

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C