Home
Class 12
MATHS
" a) If "tan^(-1)a+tan^(-1)b+tan^(-1)c=p...

" a) If "tan^(-1)a+tan^(-1)b+tan^(-1)c=pi," prove that "a+b+c=abc

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

if tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove that a+b+c=abc

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

Q.if tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi, then prove that a+b+c=abc.

If "tan"^(-1)a+"tan"^(-1)b+"tan"^(-1)c=pi , then prove that a+b+c=abc .

If in triangleABC, tan^(-1)(a/(b+c))+ tan^(-1)(c/(a+b)) = pi/4 , then prove that, the triangle is right angled.

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .