Home
Class 11
MATHS
[" Het "x,y" be positive real numbers an...

[" Het "x,y" be positive real numbers and "m" ,"n" positive integers.The maximum value of the expression "],[(x^(2)y^(3))/((1+x^(2m))(1+y^(2n)))" is : "," (JEE-MAIN ONLINE-2019] "],[[" (1) "(1)/(2)," (2) "(1)/(4)," (3) "(m+n)/(6mn)," (4) "1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

If x,y are positive real numbers and m, n are positive integers, then prove that (x^(n) y^(m))/((1 + x^(2n))(1 + y^(2m))) le (1)/(4)

If x,y are positive real numbers and m, n are positive integers, then prove that (x^(n) y^(m))/((1 + x^(2n))(1 + y^(2m))) le (1)/(4)

If x and y are positive real numbers and m, n are any positive integers, then prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt 1/4

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4

If x and y are positive real numbers and m, n are any positive integers, then prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt 1/4