Home
Class 12
MATHS
यदि समीकरण ax^(2) + bx + c=0, (a ne 0) क...

यदि समीकरण `ax^(2) + bx + c=0, (a ne 0)` के मूल `alpha, beta` है और समीकरण `Ax^(2) + Bx + C =0, (A ne 0)` के मूल `alpha + delta, beta + delta` है,
जहाँ `delta` एक नियतांक है, तो सिद्ध कीजिए कि
`(b^(2)-4ac)/a^(2) =(B^(2)-4AC)/A^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of ax^(2) +bx+c=0, ( a ne 0) and alpha + delta , beta + delta are the roots of Ax^(2) +Bx+C=0,(A ne 0) for some constant delta , then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) .

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =

If alpha,beta are the roots of ax^(2)+bx+c=0,(a!=0) and alpha+delta,beta+delta are the roots of Ax^(2)+Bx+C=0,(A!=0) for some constant delta then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2))

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

IF alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If the roots of ax^(2) + bx + c are alpha,beta and the roots of Ax^(2) + Bx + C=0 are alpha- K,beta-K , then (B^(2) - 4AC)/(b^(2) - 4ac) is equal to -

If alpha, beta are the roots of ax^(2)+2bx+c=0 and alpha +delta, beta + delta are those of Ax^(2)+2Bx+C=0 , then prove that (b^(2)-ac)/(B^(2)-AC)= ((a)/(A))^(2)

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and alpha+delta,beta+delta are the roots of the equation Ax^(2)+Bx+C=0 then prove that (b^(2)-4ac)/(a^(2))=(B^(2)-4AC)/(A^(2)) for some constant value of delta

Let f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac . If alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3) are in GP, then