Home
Class 12
MATHS
Given P = (3,-6,10)and PQ = sqrt(17) . I...

Given `P = (3,-6,10)and PQ = sqrt(17)` . If direction cosines of line PQ are ` (-2)/(sqrt(17)),3/(sqrt(17)),(-2)/(sqrt(17))` , then point Q can be

Promotional Banner

Similar Questions

Explore conceptually related problems

Comparison of ratios (sqrt(13))/(sqrt(8)),(sqrt(17))/(sqrt(15))

D.c.s of a line segment AB are (-2)/(sqrt(17)),(3)/(sqrt(17)),(-2)/(sqrt(17)) . If AB=sqrt(17) and A-=(3,-6,10) , then co-ordinates of B will be

Simplify : (7)/(sqrt(17) - 2sqrt3)-( 3)/(sqrt(17) +2sqrt3)

The value of log_(2)(sqrt(17+2sqrt(6))-sqrt(7-2sqrt(6))) is equal to

If a=sqrt(17)-sqrt(16) and b=sqrt(16)-sqrt(15) then

Simplify : (22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)

The projections of the segment PQ on the coordinate axes are -9,12,-8 respectively. The direction cosines of the line PQ are (A) -9/sqrt(17),12/sqrt(17),-8/sqrt(17) (B) -9/288,12/289,-8/289 (C) -9/17,12/17,-8/17 (D) none of these

The projections of the segment PQ on the coordinate axes are -9,12,-8 respectively. The direction cosines of the line PQ are (A) -9/sqrt(17),12/sqrt(17),-8/sqrt(17) (B) -9/288,12/289,-8/289 (C) -9/17,12/17,-8/17 (D) none of these