Home
Class 11
MATHS
(1)/(1+log(b)a+log(b)c)+(1)/(1+log(c)a+l...

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)=

Promotional Banner

Similar Questions

Explore conceptually related problems

( Prove that )/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)=1

Show that log_(b)a log_(c)b log_(a)c=1

If a,b,c are non-zero and different from 1, then the value of |{:( log _(a) 1 , log _(a) b , log _(a) c ), ( log _(a ) ((1)/(b)), log _(b) 1 ,log_(a) ((1)/(c))), ( log _(a) ((1)/(c)) ,log _(a)c, log _(c) 1):}| is

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

If a,b,c be three such positive numbers (none of them is 1) that (log_(b)a log_(c )a-log_(a)a) + (log_(a)b log_(c )b-log_(b)b) + (log_(a)c log_(b)c-log_(c )c) = 0 , the prove that abc = 1.

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

If a,b,c are distinct positive real numbers each different from unity such that (log_(a)a.log_(c)a-log_(a)a)+(log_(a)b*log_(c)b-log b_(b))+(log_(a)c.log_(a)c-log_(c)c)=0 then prove that abc=1

If a, b, c are distinct positive numbers each being different from 1 such that (log_(b)a.log_(c)a-log_(a)a)+(log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)c)=0 , then abc is a)0 b)e c)1 d)2