Home
Class 11
MATHS
y=f(x)=(2x+4)/(5x-2)dotP r o v e t h a t...

`y=f(x)=(2x+4)/(5x-2)dotP r o v e t h a tf(y)=x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(xsin^(-1)x)/(sqrt(1-x^2)),"p r o v et h a t"(1-x^2)(dy)/(dx)=x+y/xdot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If y=e^x+e^(-x),"p r o v et h a t"(dy)/(dx)=sqrt(y^2-4)

f(x) is a continuous and bijective function on Rdot If AAt in R , then the area bounded by y=f(x),x=a-t ,x=a , and the x-axis is equal to the area bounded by y=f(x),x=a+t ,x=a , and the x-axis. Then prove that int_(-lambda)^lambdaf^(-1)(x)dx=2alambda(gi v e nt h a tf(a)=0)dot

f(x) is a continuous and bijective function on Rdot If AAt in R , then the area bounded by y=f(x),x=a-t ,x=a , and the x-axis is equal to the area bounded by y=f(x),x=a+t ,x=a , and the x-axis. Then prove that int_(-lambda)^lambdaf^(-1)(x)dx=2alambda(gi v e nt h a tf(a)=0)dot

f(x) is a continuous and bijective function on Rdot If AAt in R , then the area bounded by y=f(x),x=a-t ,x=a , and the x-axis is equal to the area bounded by y=f(x),x=a+t ,x=a , and the x-axis. Then prove that int_(-lambda)^lambdaf^(-1)(x)dx=2alambda(gi v e nt h a tf(a)=0)dot

f(x) is a continuous and bijective function on Rdot If AAt in R , then the area bounded by y=f(x),x=a-t ,x=a , and the x-axis is equal to the area bounded by y=f(x),x=a+t ,x=a , and the x-axis. Then prove that int_(-lambda)^lambdaf^(-1)(x)dx=2alambda(gi v e nt h a tf(a)=0)dot

f(x) is a continuous and bijective function on Rdot If AAt in R , then the area bounded by y=f(x),x=a-t ,x=a , and the x-axis is equal to the area bounded by y=f(x),x=a+t ,x=a , and the x-axis. Then prove that int_(-lambda)^lambdaf^(-1)(x)dx=2alambda(gi v e nt h a tf(a)=0)dot