Home
Class 12
MATHS
यदि वृत्त x^(2)+y^(2)+2x+2ky+6=0 और x^(2...

यदि वृत्त `x^(2)+y^(2)+2x+2ky+6=0` और `x^(2)+y^(2)+2ky+k=0` एक-दसूरे को लंबकोणीय प्रतिच्छेद करते है, तो k का मान है

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+6x+2ky+25=0 to touch y-axis then k=

If x^(2)+y^(2)+6x+2ky+25=0 to touch y-axis then k=

If the circles x^(2) + y^(2) + 2x + 2ky + 6 = 0 and x^(2) + y^(2) + 2ky + k = 0 intersect orthogonally , then k is equal to _

The graph of the equations 3x-20y-2=0 and 11x-5y+61=0 intersect at P(a,b). What is the value of (a^2+b^2-ab)(a^2-b^2+ab) ? 3x-20y-2 = 0 और 11x-5y 61 = 0 समीकरणों के आरेख P(a,b) पर एक दूसरे को प्रतिच्छेद करते हैं। (a^2+b^2-ab)(a^2-b^2+ab) का मान क्या है?

If circles x^(2) + y^(2) - 3x + ky - 5 = 0 " and " 4x^(2) + 4y^(2) - 12x- y - 9 = 0 are concentric , then k =

If the two circle x^(2) + y^(2) - 3x + ky - 5 = 0 and 4x^(2) + 4y^(2) - 12x - y - 9 = 0 are concentric , then : k =

5x + 2y = 2k , 2 (k + 1 ) x + ky = (3k + 4)