Home
Class 11
MATHS
The greatest positive argument of comple...

The greatest positive argument of complex number satisfying `|z-4|=R e(z)` is
A. `pi/3`
B. `(2pi)/3`
C. `pi/2`
D. `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest positive argument of complex number satisfying |z-4|=Re(z) is (pi)/(3) b.(2 pi)/(3) c.(pi)/(2) d.(pi)/(4)

The argument of the complex number z=1 + i tan ""(3pi)/(5) is-

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

The argument of the complex number (i/2-2/i) is equal to (a) pi/2 (b) pi/4 (c) pi/12 (d) (3pi)/4

The argument of the complex number ((i)/(2) - (2)/(i)) is equal to a) (pi)/(4) b) (3 pi)/(4) c) (pi)/(12) d) (pi)/(2)

If the argument of a complex number Z - 2 - 3i is pi/4 then the locus of z = x + iy is

The principal argument of the complex number z = (1+ sin""(pi)/(3) + icos""(pi)/(3))/(1+sin""(pi)/(3) - i cos ""(pi)/(3)) is

Number of complex numbers satisfying equation z^(3)=bar(z)&arg(z+1)=(pi)/(4) simultaneously is

Find the locus of the complex number z=x+iy , satisfying relations arg(z-1)=(pi)/(4) and |z-2-3i|=2 .

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)