Home
Class 10
MATHS
[" Prove that the "101],[" (i) "(1)/(sqr...

[" Prove that the "101],[" (i) "(1)/(sqrt(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) sin(tan^(-1)1) = 1/(sqrt(2))

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

Prove that [(i+sqrt(3))/(-i+sqrt(3))]^(100)+[(i-sqrt(3))/(i+sqrt(3))]^(100)=-1

Prove that: i) sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2

Prove that 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(335)=i sqrt(3)

Prove that sqrt i+sqrt(-i)=sqrt 2

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1

Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(100)=-1