Home
Class 11
MATHS
If 1lt=rlt=n , then \ n^(n-1)Cr=(n-r+1)\...

If `1lt=rlt=n ,` then `\ n^(n-1)C_r=(n-r+1)\ ^n C_(r-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1lt=rlt=n , then \ n^(n-1)C_r_ _1 =(n-r+1)\ ^n C_(r-1)dot

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

Let n\ a n d\ r be non negative integers such that 1lt=rlt=ndot Then, \ ^n C_r=n/rdot\ \ ^(n-1)C_(r-1)\ dot

The result of ^(n-1)C_r+^(n-1)C_(r-1)=

Prove that if 1 le r le n " then " n xx^((n-1))C_(r-1)= (n-r+1).^(n)C_(r-1)

Prove by combinatorial argument that .^(n+1)C_r=^n C_r+^n C_(r-1)dot

Prove by combinatorial argument that .^(n+1)C_r=^n C_r+^n C_(r-1)dot

Let n and r be non negative integers such that 1<=r<=n* Then,^(n)C_(r)=(n)/(r)*^(n-1)C_(r-1)

Let n\ a n d\ r be no negative integers suych that rlt=n .Then, \ ^n C_r+\ ^n C_(r-1)=\ ^(n+1)C_r

Prove that combinatorial argument that ^n+1C_r=^n C_r+^n C_(r-1)dot