Home
Class 11
MATHS
If tan^(2)theta = 1 - k^(2), show that s...

If `tan^(2)theta = 1 - k^(2)`, show that sec `theta` + `tan^(3)theta` cosec `theta = (2 - k^(2))^(3//2)`. Also, find the values of k for which this result holds.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(2)theta=1-k^(2), show that sec theta+tan^(3)theta.cos ec theta=

If tan^(2)theta=1-a^(2), prove that sec theta+tan^(3)theta cos ec theta=(2-a^(2))^(3/2). Also, find the values of a for which the above result holds true.

If tan ^(2) theta=1-k^(2) , show that sec theta+tan ^(3) theta cosectheta=(2-k^(2))^(3 / 2)

If tan^(2)theta = (1-e^2) show that sec theta + tan^(3). "cosec" theta = (2-e^(2))^(3//2) .

If tan ^2 theta =1-e ^(2), then sec theta + tan ^(3) theta cosec theta =

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^2 theta= 1-e^2 prove that sec theta + tan^3 theta cosec theta = (2-e^2)^(3/2)

If tan^(2)theta=1-a^(2), prove that sec theta+tan^(3)theta csc theta=(2-a^(2))^((3)/(2))