Home
Class 11
MATHS
यदि cot theta ( 1+ sin theta ) = 4m औ...

यदि ` cot theta ( 1+ sin theta ) = 4m ` और ` cot theta ( 1 - sin theta ) = 4 n ,`
तो सिद्ध कीजिए कि ` (m^(2) - n^(2))^(2)= mn`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot theta (1 + sin theta ) = 4m and cot theta (1 - sin theta ) = 4n, prove that (m^(2) - n^(2))^(2) = mn.

If sin theta = 1/2, then cot theta …………

If tan theta + sin theta = m, tan theta - sin theta = n " then " (m^(2)-n^(2))^(2)=

If tan theta + sin theta = m , tan theta - sin theta = n then m^(2) -n^(2) is equal

(1+cos 2 theta)/(sin 2 theta)=cot theta

If cot theta(1+sin theta)=4man d cot theta(1-sin theta)=4n prove that (m^(2)-n^(2))^(2)=mn

If cot theta = sin 2 theta and theta != n pi , then : theta =

If tan theta+sin theta=m and tan theta-sin theta=n show m^(2-)n^(2)=4sqrt(mn)