Home
Class 11
PHYSICS
Given vec(A) = 3hat(i) + 2hat(j) and vec...

Given `vec(A) = 3hat(i) + 2hat(j) and vec(B) = hat(i) + hat(j).` The component of vector `vec(A)` along vector `vec(B)` is

A

`1/sqrt2`

B

`3/sqrt2`

C

`5/sqrt2`

D

`7/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
C

`vecA.vecB=|vecA||vecB|cos theta" or " cos theta=(vecAvecB)/(|vecA||vecB|)`
The componemt of `vecA` in the direction of `vecB`
`=|vecA|cos theta=|vecA|(vecA.vecB)/(|vecA||vecB|)=(2+3)/sqrt3=5/sqrt2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (MOTION IN A PLANE )|23 Videos
  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (PROJECTILE MOTION)|58 Videos
  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (VECTORS)|23 Videos
  • GRAVITATION

    MTG GUIDE|Exercise AIPMT/NEET MCQS|32 Videos
  • LAWS OF MOTION

    MTG GUIDE|Exercise AIPMT /NEET (MCQ)|24 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+hat(j) and vec(B)=hat(i)-hat(j) , sketch vector graphically and find the component of vec(A) along vec(B) and perpendicular to vec(B)

If vec a=4hat i+6hat j and vec b=3hat j+hat k, then the component of vec a along vec b is

Knowledge Check

  • vec(A) and vec(B) are two vectors given by vec(A)=2hat(i)+3hat(j) and vec(B)=hat(i)+hat(j). The magnitude of the component of vec(A) along vec(B) is

    A
    `(5)/(sqrt2)`
    B
    `(3)/(sqrt2)`
    C
    `(7)/(sqrt2)`
    D
    `(1)/(sqrt2)`
  • Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

    A
    11
    B
    `-11`
    C
    13
    D
    none of these
  • If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b)= - hat(i) + 2hat(j) + 3 and vec(c ) = 3hat(i) + hat(j) are three vectors such that vec(a) + t vec(b) is perpendicular to c. then what is t equal to?

    A
    8
    B
    6
    C
    4
    D
    2
  • Similar Questions

    Explore conceptually related problems

    Let vec(a)=hat(i)+2hat(j) and vec(b)=2hat(i)+hat(j) . (i) Then, |vec(a)|=|vec(b)| (ii) Then vectors vec(a) and vec(b) are equal.

    If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

    Let a vector vec(a) be coplanar with vectors vec(b) = 2hat(i) + hat(j) + hat(k) and vec(c) = hat(i) - hat(j) + hat(k) . If vec(a) is perpendicular to vec(d) = 3hat(i) + 2hat(j) + 6hat(k) , and |vec(a)| = sqrt(10) . Then a possible value of [[vec(a),vec(b),vec(c)]] + [[vec(a), vec(b), vec(d)]] + [[vec(a),vec(c),vec(d)]] is equal to :

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is