Home
Class 11
PHYSICS
If vecA = - 4 hatj + 3 hatj and vecB = 2...

If `vecA = - 4 hatj + 3 hatj and vecB = 2hati + 5 hatj and vecC = vecA xx vecB`, then the vector `vecC` makes an angle of

A

`45^(@) ` with x - axis

B

`180^(@) ` with y - axis

C

`0^(@) ` with z - axis

D

`180^(@) ` with z - axis

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{C}\) which is the cross product of vectors \(\vec{A}\) and \(\vec{B}\), and then determine the angles that \(\vec{C}\) makes with the x, y, and z axes. ### Step 1: Define the vectors Given: \[ \vec{A} = -4 \hat{i} + 3 \hat{j} \] \[ \vec{B} = 2 \hat{i} + 5 \hat{j} \] ### Step 2: Calculate the cross product \(\vec{C} = \vec{A} \times \vec{B}\) Using the determinant method for the cross product: \[ \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -4 & 3 & 0 \\ 2 & 5 & 0 \end{vmatrix} \] Calculating the determinant: \[ \vec{C} = \hat{i} \begin{vmatrix} 3 & 0 \\ 5 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} -4 & 0 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} -4 & 3 \\ 2 & 5 \end{vmatrix} \] Calculating each of the minors: 1. \(\begin{vmatrix} 3 & 0 \\ 5 & 0 \end{vmatrix} = 3 \cdot 0 - 5 \cdot 0 = 0\) 2. \(\begin{vmatrix} -4 & 0 \\ 2 & 0 \end{vmatrix} = -4 \cdot 0 - 2 \cdot 0 = 0\) 3. \(\begin{vmatrix} -4 & 3 \\ 2 & 5 \end{vmatrix} = (-4)(5) - (3)(2) = -20 - 6 = -26\) Putting it all together: \[ \vec{C} = 0 \hat{i} - 0 \hat{j} - 26 \hat{k} = -26 \hat{k} \] ### Step 3: Determine the angles with the axes 1. **Angle with the x-axis**: \[ \cos \theta_x = \frac{\vec{C} \cdot \hat{i}}{|\vec{C}| |\hat{i}|} = \frac{0}{26 \cdot 1} = 0 \implies \theta_x = 90^\circ \] 2. **Angle with the y-axis**: \[ \cos \theta_y = \frac{\vec{C} \cdot \hat{j}}{|\vec{C}| |\hat{j}|} = \frac{0}{26 \cdot 1} = 0 \implies \theta_y = 90^\circ \] 3. **Angle with the z-axis**: \[ \cos \theta_z = \frac{\vec{C} \cdot \hat{k}}{|\vec{C}| |\hat{k}|} = \frac{-26}{26 \cdot 1} = -1 \implies \theta_z = 180^\circ \] ### Final Result The vector \(\vec{C} = -26 \hat{k}\) makes: - An angle of \(90^\circ\) with the x-axis, - An angle of \(90^\circ\) with the y-axis, - An angle of \(180^\circ\) with the z-axis.

To solve the problem, we need to find the vector \(\vec{C}\) which is the cross product of vectors \(\vec{A}\) and \(\vec{B}\), and then determine the angles that \(\vec{C}\) makes with the x, y, and z axes. ### Step 1: Define the vectors Given: \[ \vec{A} = -4 \hat{i} + 3 \hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (MOTION IN A PLANE )|23 Videos
  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (PROJECTILE MOTION)|58 Videos
  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (VECTORS)|23 Videos
  • GRAVITATION

    MTG GUIDE|Exercise AIPMT/NEET MCQS|32 Videos
  • LAWS OF MOTION

    MTG GUIDE|Exercise AIPMT /NEET (MCQ)|24 Videos

Similar Questions

Explore conceptually related problems

If veca = 3 hati -4 hatj and vecb =- 2 hati + 3 hatk, what is vecc=veca xx vecb ?

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca = (hati - 2hatj), vecb = (2hati - 3hatj) and vecc = (2hati + 3hatk) , find (veca + vecb + vecc) .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, then find a vector vecb satisfying the equation veca xx vecb = vecc and veca. vecb =3.

Let veca=hati+2hatj and vecb=2hati+hatj. Is |veca|=|vecb" Are the vectors veca and vecb equal?.