Home
Class 12
MATHS
(beta^2+gamma^2)/(beta gamma)+(gamma^2+a...

`(beta^2+gamma^2)/(beta gamma)+(gamma^2+alpha^2)/(gamma alpha) +(alpha^2+beta^2)/(alphabeta) or sum (beta^2+gamma^2)/(beta gamma)`

Text Solution

Verified by Experts

The correct Answer is:
`(pq -3r)/( r)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    AAKASH SERIES|Exercise EXERCISE -2.2 (VERY SHORT ANSWER QUESTIONS)|6 Videos
  • THEORY OF EQUATIONS

    AAKASH SERIES|Exercise EXERCISE -2.2 (SHORT ANSWER QUESTIONS)|19 Videos
  • THEORY OF EQUATIONS

    AAKASH SERIES|Exercise EXERCISE -2.1 (VERY SHORT ANSWER QUESTIONS)|18 Videos
  • SYSTEM OF CIRCLES

    AAKASH SERIES|Exercise EXERCISE 2.2|22 Videos
  • TRANSFORMATIONS AND INDENTITIES

    AAKASH SERIES|Exercise PRACTIVE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that: |{:(1, beta gamma, beta + gamma),(1, gamma alpha, gamma + alpha),(1, alpha beta, alpha + beta):}| = |{:(1, alpha, alpha^(2)),(1, beta, beta^(2)),(1, gamma, gamma^(2)):}|

Without expanding the determinant, prove that: (i) |{:(alpha, alpha^(2), beta gamma),(beta, beta^(2), gamma alpha),(gamma, gamma^(2), alpha beta):}| =|{:(1,alpha^(2), alpha^(3)),(1, beta^(2), beta^(3)),(1, gamma^(2), gamma^(3)):}|

If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then match the following. (1)/(alpha) + (1)/(beta) + (1)/(gamma)" "(a)(p^(2) - 2q)/(r^(2)) ii. (1)/(alpha beta) + (1)/(beta gamma) + (1)/(gamma alpha)=" "(b) (q^(2) - 2pr)/(r^(2)) iii. (1)/(a^(2)) + (1)/(beta^(2)) + (1)/(gamma^(2)) =" " (c ) (p)/(r ) iv. (1)/(alpha^(2) beta^(2)) + (1)/(beta^(2) gamma^(2) ) + (1)/(gamma^(2) alpha^(2)) = " " (d) (q)/(r )

sin 2 alpha + sin 2 beta + sin 2 gamma - sin2(alpha + beta + gamma )=