Home
Class 12
MATHS
If alpha , beta , gamma are the root...

If ` alpha , beta , gamma ` are the roots of ` x^3 + qx +r=0` then `(1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta)`=

Text Solution

Verified by Experts

The correct Answer is:
`q/(2r)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    AAKASH SERIES|Exercise EXERCISE-I|47 Videos
  • THEORY OF EQUATIONS

    AAKASH SERIES|Exercise EXERCISE-II|54 Videos
  • THEORY OF EQUATIONS

    AAKASH SERIES|Exercise EXERCISE -2.3 (LONG ANSWER QUESTIONS)|19 Videos
  • SYSTEM OF CIRCLES

    AAKASH SERIES|Exercise EXERCISE 2.2|22 Videos
  • TRANSFORMATIONS AND INDENTITIES

    AAKASH SERIES|Exercise PRACTIVE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha, beta ,gamma are the roots of 2x^(3) - 5x^(2) + 3x - 1 = 0 then (1)/(alpha beta ) + (1)/(beta gamma) + (1)/(gamma alpha) =

If alpha , beta , gamma are the roots of the equation x^3 - px^2 + qx +r=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha)=

If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(3) + beta^(3) + gamma^(3) =

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(4) + beta^(4) + gamma^(4) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =