Home
Class 12
MATHS
Show that the locus of the point of inte...

Show that the locus of the point of inter section of the lines `x cos theta +y sin theta =a, x sin theta -y cos theta = b, theta` is a parameter is a circle.

Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.1 ( LONG ANSWER QUESTIONS)|4 Videos
  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.2 (VERY SHORT ANSWER QUESTIONS)|9 Videos
  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.1 (VERY SHORT ANSWER QUESTIONS)|6 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos

Similar Questions

Explore conceptually related problems

If x cos theta + y sin theta = a , x sin theta - y cos theta = b then

The locus of the point of intersection of the lines x sin theta+(1-cos theta)y=a sin theta and x sin theta -(1+cos theta )y+a sin theta =0 is

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by "cosec"theta=a^(2)-b^(2) is

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

The inverse of A=[( cos theta, sin theta),(-sin theta, cos theta)] is

( cos 3 theta - sin 3 theta )/( cos theta+ sin theta ) =

If A=[(-cos theta, sin theta),(sin theta, cos theta)] then IAI=

The locus of the point ( a cos theta + b sin theta, a sin theta - b cos theta ) where 0 le theta lt 2pi is

(cos theta + sin theta )^(2) + (cos theta - sin theta )^(2) =