Home
Class 12
MATHS
Locus of the point (sec h theta, tan h t...

Locus of the point `(sec h theta, tan h theta)` is

A

`x^(2)+y^(2)=1`

B

`x^(2)-y^(2)=1`

C

`x^(2)+y^(2)+1=0`

D

`x^(2)-y^(2)=x+y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE II|169 Videos
  • CIRCLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|164 Videos
  • CIRCLES

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|47 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos

Similar Questions

Explore conceptually related problems

The locus of the point (a cos h theta, b sin h theta ) is

The locus of the point (a sec theta, b tan theta ) where 0 le theta lt 2pi is

The locus of the point ( a sec theta + b tan theta , bsec theta +atan theta) where 0 le theta lt 2pi is

The locus of the point (cosec theta - sin theta, sec theta - cos theta ) where 0 le theta lt 2pi is

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

(cos theta )/( sec theta + tan theta ) + ( cos theta )/( sec theta - tan theta ) =

Prove that (sin theta - cos theta + 1)/(sin theta + cos theta - 1) = (1)/(sec theta - tan theta) using the identity sec^(2) theta = 1 + tan^(2) theta .

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]

The locus of the point of intersection of two tangents to the parabola y^(2)=4ax which make the angles theta_(1) and theta_(2) with the axis so that tan theta_(1) tan theta_(2) =k is

AAKASH SERIES-CIRCLES-EXERCISE -I
  1. The parametric equations of the circle x^(2)+y^(2)+2x+4y-11=0 are

    Text Solution

    |

  2. If x=3+2cos theta, y=5+2sin theta then the locus of the point (x,y) is...

    Text Solution

    |

  3. Locus of the point (sec h theta, tan h theta) is

    Text Solution

    |

  4. Locus of the point (cos theta +sin theta, cos theta - sin theta) where...

    Text Solution

    |

  5. To the circle x^(2)+y^(2)-8x-4y+4=0 tangent at the point theta=(pi)/4 ...

    Text Solution

    |

  6. The normal at theta of the circle x^(2)+y^(2)=a^(2) is

    Text Solution

    |

  7. The chord of contact of (2,1) w.r.t to the circle x^(2)+y^(2)+4x+4y+1=...

    Text Solution

    |

  8. The chord of contact of (1,2) with respect to the circle x^(2)+y^(2)-4...

    Text Solution

    |

  9. Find the inverse point of (-2,3) with respect to the circle x^(2)+y^(2...

    Text Solution

    |

  10. For all real values of k, the polar of the point (2k, k-4) with respec...

    Text Solution

    |

  11. The polar of (2,3) w.r.t the circle x^(2)+y^(2)-4x-6y+2=0 is

    Text Solution

    |

  12. The polar of the line 8x-2y=11 with respect to the circle 2x^(2)+2y^(2...

    Text Solution

    |

  13. Pole of 3x+5y+17=0 w.r.t the circle x^(2)+y^(2)+4x+6y+9=0 is

    Text Solution

    |

  14. If ax + by + c = 0 is the polar of (1,1) with respect to the circle x^...

    Text Solution

    |

  15. If (1,4), (-2,3) are conjugate points w.r.t x^(2)+y^(2)=k then k=

    Text Solution

    |

  16. If (1, a), (b, 2) are conjugate points with renpcet to the circle x^(2...

    Text Solution

    |

  17. If (1,1), (k,2) are conjugate points with respect to the circle x^(2)+...

    Text Solution

    |

  18. If (4,2) and (k,-3) are conjugate points with respect to x^(2)+y^(2)-5...

    Text Solution

    |

  19. If 3x+2y=3 and 2x+5y=1 are conjugate lines w.r.t the circle x^(2)+y^(2...

    Text Solution

    |

  20. The condition for the lines lxk+my+n=0 and l(1)x+m(1)y+n(1)=0 to be co...

    Text Solution

    |