Home
Class 12
MATHS
If x=t^(2) and y=log t, find (dy)/(dx)....

If `x=t^(2)` and `y=log t`, find `(dy)/(dx)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=te^(t) and y=1+log t, find (dy)/(dx)

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If x = ct and y = c/t , find (dy)/(dx) at t = 2 .

If x=ct and y= (c )/(t) , find (dy)/(dx) at t=2

If x = ct and y=c/t , find (dy)/(dx) at t=2.

If x=ct and y= (c )/(t) , find (dy)/(dx) at t=2 is

If x = ct and y=c/t , find (dy)/(dx) at t=2.

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)