Home
Class 11
MATHS
if loga x=1/alpha , logb x=1/beta , logc...

if `log_a x=1/alpha , log_b x=1/beta , log_c x=y` then `log_(abc)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x then the value equal to:

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

Given that log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta) and log_(c)x=(1)/(gamma) Then find log_(abc)x

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .