Home
Class 12
MATHS
Prove that |tan^(-1)x-tan^(-1)y|lt=|x-y|...

Prove that `|tan^(-1)x-tan^(-1)y|lt=|x-y|AAx , y in Rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |tan^(-1)x-tan^(-1)y|<=|x-y|AA x,y in R

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)(1/(x+y))+tan^(-1)(y/(x^2+xy+1) )= cot^(-1)x .

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

Prove that tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)((x+y+z-xyz)/(1-xy-yz-zx))

Prove that , tan^(-1)""x+ tan^(-1) ""y+tan^(-1)""z= tan ^(-1)""(x+y+z-xyz)/(1-xy-yz-zx)

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))