Home
Class 12
MATHS
यदि (If) y=e^(x+e^(x+e^(x+..."to"infty))...

यदि (If) `y=e^(x+e^(x+e^(x+..."to"infty)))` तो साबित करें कि (prove that) `(dy)/(dx)=(y)/(1-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x+e^(x+e^x+....infty , then dy/dx=

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx) .

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If y =e^(x+e^(x+e^(x+...infty ))),then (dy)/(dx) =

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x=e^(x//y), prove that (dy)/(dx) = (x-y)/(xlogx)

If xy = e^(x - y) , prove that (dy)/(dx) = (y (x - 1))/(x (y + 1))