Home
Class 12
MATHS
The indefinite integral I=int((sin^(2)x-...

The indefinite integral `I=int((sin^(2)x-cos^(2)x)^(2019))/((sinx)^(2021)(cosx)^(2021))dx` simplifies to (where c is an integration constant)

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

Integrate: int (sin^(2)x)/(1+cosx)(dx)

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)