Home
Class 12
MATHS
The range of the function f(x)=int(1)^(x...

The range of the function `f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= int_(-1)^(x)|t|dt ,x>=-1 then

The range of the function f(x)=int_(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

The greatest value of f(x)=int_(1)^(x)|t||dt on the interval [-(1)/(2),(1)/(2)]:

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Find the range of the function f (x) = int _(0) ^(x) |t-1| dt, where 0 le x le 2

Find the range of the function,f(x)=int_(-1)^(1)(sin xdt)/(1-2cos x+t^(2))

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is