Home
Class 12
MATHS
If A=[[-a,b],[c,d]] and A^(2)=I then...

If `A=[[-a,b],[c,d]]` and `A^(2)=I` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[a,b],[c,d]] and I=[[1,0],[0,1]] then A^2-(a+d)A-(bc-ad)I=

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

"If A"= ({:(2, 3),(5, 1):}), B = ({:(a, b),(c, d):}) and AB = -13I, then find the value of a + b - c + d. (a) 5 (b) 3 (c) 2 (d) 1

If a, b, c and are real numbers and A =[{:( a,b),(c,d) :}] prove that A^(2) -(a+d) A+(ad-bc) I=0

If D=|[a,b,c], [c,a,b], [b,c,a]| and D'=|[b+c, c+a, a+b], [a+b, b+c, c+a], [c+a, a+b, b+c]|, then prove that D' = 2D

If A=[[a+i b, c+i d],[-c+i d, a-i b]]a n da^2+b^2+c^2+d^2=1,t h e nA^(-1) is equal to a.[[a+i b,-c+i d],[-c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If A = 1/ sqrt(3) [[1,1+i],[1-i,1]] then A(bar(A)^T) equals : a. O b. I c. -I d. 2I

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

Statement 1: if a ,b ,c ,d are real numbers and A=[a b c d]a n dA^3=O ,t h e nA^2=Odot Statement 2: For matrix A=[a b c d] we have A^2=(a+d)A+(a d-b c)I=Odot