Home
Class 12
MATHS
Let the eccentricity of the hyperbola (x...

Let the eccentricity of the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` be the reciprocal to that of the ellipse `x^(2)+4y^(2)=4`. If the hyperbola passes through a focus of the ellipse, then the equation of the hyperbola, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the eccentricity of the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 be reciprocal to that of the ellipse x^(2) + 4y^(2) = 4 . If the hyperbola passes through a focus of the ellipse, then

let the eccentricity of the hyperbola x^2/a^2-y^2/b^2=1 be reciprocal to that of the ellipse x^2+4y^2=4. if the hyperbola passes through a focus of the ellipse then: (a) the equation of the hyperbola is x^2/3-y^2/2=1 (b) a focus of the hyperbola is (2,0) (c) the eccentricity of the hyperbola is sqrt(5/3) (d) the equation of the hyperbola is x^2-3y^2=3

The eccentricity of the hyperbola 3x^(2)-4y^(2)=-12 is

Let the eccentricity of the hyperbola (x ^(2))/(a ^(2))- (y ^(3))/(b ^(2)) =1 be reciprocal to that of the ellipse x ^(2) + 9y ^(2) =9, then the ratio a ^(2) : b ^(2) equals

Find the eccentricity of the hyperbola 9y^(2)-4x^(2)=36

The eccentricity of the hyperbola x ^(2) - y^(2) =25 is