Home
Class 12
MATHS
If (dy)/(dx)=(e^(y)-x)^(-1) and y(0)=0 t...

If `(dy)/(dx)=(e^(y)-x)^(-1)` and `y(0)=0` then find the solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=f(x) is a solution of differential equation e^(y)((dy)/(dx)-1)=e^(x) and f(0)=0 then f(1) is equal to

If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)

The solution of (dy)/(dx)+y=e^(-x), y(0)=0 is

Solve (dy)/(dx)-y=e^(x) ,y(0)=1

Solve the differential equation. (dy)/(dx) - y = e^(x) Hence find the particluar solution for x = 0 and y = 1 .

Find the value of log_(e)((dy)/(dx))=ax+by then find the solution when y=0 if x=0

If (dy)/(dx)= y sin 2x, y(0)=1 , then solution is

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If y=y(x) is solution of differential equation (5+e^(x))/(2+y) (dy)/(dx)=e^x and y(0)=4 than find y(log_e 13)