Home
Class 11
MATHS
veca+2vecb+3vecc=vec0 and vecaxxvecb+vec...

`veca+2vecb+3vecc=vec0` and `vecaxxvecb+vecbxxvecc+veccxxveca=l(vecbxxvecc)`. then `l=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca= (A) 2(vecaxxvecb) (B) 6(vecbxxvecc) (C) 3(veccxxveca) (D) 0

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

Let veca,vecb,vecc be unit such that veca+vecb+vecc=vec0 . Which one of the following is correct? (A) vecaxxvecb=vecbxxvecc=veccxxveca=vec0 (B) vecaxxvecb=vecbxxvecc=veccxxveca!=vec0 (C) vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0 (D) vecaxxvecb, vecbxxvecc, veccxxveca are mutually perpendicular

If 4veca+5vecb+9vecc=vec0 then (vecaxxvecb).{(vecbxxvecc)xx(veccxxveca)} is equal to

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If (vecaxxvecb).{(vecbxxvecc)xx(veccxxveca)}=(veca.(vecbxxvecc))^(k) find k.

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is