Home
Class 12
MATHS
If lim(x->0)int0^x(t^2dt)/((x-sinx)sqr...

If `lim_(x->0)int_0^x(t^2dt)/((x-sinx)sqrt(a+t))=1`, then a is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)int_(0)^(x)(t^(2)dt)/((x-sin x)sqrt(a+t))=1, then a is equal to

"If" I=int_0^x(t^2dt)/((x-sinx)sqrt(a+t))a n d(lim)_(xvec0)I=1, then a is equal to : 1 (2) 2 (3) 4 (4) 0 (5) 3

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(x to 0)(int_(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

If lim_(xto0)int_(0)^(x)(2t dt)/((e^(x)-1-x)sqrt((2a)/3-t/2+104))=1/19 , then a/2010 equals…..

lim_(x to 0) (2 int_(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to