Home
Class 12
MATHS
In the expansion of ((x)/(costheta)+(1)/...

In the expansion of `((x)/(costheta)+(1)/(xsintheta))^(16)`, if `l_(1)` is the least value of the term independent of `x` when `(pi)/(8) le theta le (pi)/(4)` and `l_(2)` is the least value of the term independent of `x` when `(pi)/(16) le theta le (pi)/(8)`, then the value of `(l_(2))/(l_(1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le theta le pi//2 then

Solve : cos theta cos 2 theta cos 3 theta =(1)/(4) (0 le theta le pi)

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Find the values of theta which satisfy tan^(2)theta = 1/3, - pi le theta le pi .

sin theta -2 = cos2theta when 0 le theta le 2pi

If pi le x le (3pi)/(2) then sin pi le sinx le sin(3pi)/(2)