Home
Class 12
MATHS
Prove that (sqrt(3)/(2) +(i)/(2))^(5) +...

Prove that `(sqrt(3)/(2) +(i)/(2))^(5) + (sqrt(3)/(2) -(i)/(2))^(5)` is purely real.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ((sqrt(3))/(2) + (i)/(2))^(5) + ((sqrt(3))/(2) - (i)/(2))^(5) = -sqrt(3)

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5) , then:

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(5))/(2)+(i)/(2))^(5)+((sqrt(5))/(2)-(i)/(2))^(5) , the prove that Im(z)=0 .

If z = ((sqrt 3)/2 + i/2)^5 + ((sqrt 3)/2 - i/2)^5 , then

(sqrt5 + i sqrt3)(-2 + i)