Home
Class 11
MATHS
In a triangleABC, prove that cos^2(2A)+c...

In a `triangleABC`, prove that `cos^2(2A)+cos^2(2B)+cos^2(2C)=1+2cos2Acos2Bcos2C`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a /_ABC, prove that cos^(2)(2A)+cos^(2)(2B)+cos^(2)(2C)=1+2cos2A cos2B cos2C

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

If A+B+C=180^@ ,prove that cos^2A+cos^2B+cos^2C=1-2cos Acos B cos C .

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.