Home
Class 11
MATHS
If f: R-> [-1,1], where f(x) = sin pi...

If `f: R-> [-1,1]`, where `f(x) = sin pi/2 [x]`, where [] denotes the greatest integer function) then which of the following is false (a) `f (x)` is onto (b) `f (x)` is into c) `f (x)` is periodic (d) `f (x)` is many one

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f : R to [-1, 1] , where f(x)=sin(pi/2[x]) (where [.] denotes the greatest integer function), then the range of f(x) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is