Home
Class 12
MATHS
Solve cos x + cos 2x+...+ cos (nx) =n, n...

Solve `cos x + cos 2x+...+ cos (nx) =n, n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

cos x + cos2x + ... + cos nx = sin ((nx) / (2)) cos ec ((x) / (2)) cos (((n + 1) x) / (2))

f (x) = (cos x) ( cos 2x ) …( cos nx) implies f' (x) + sum ^(n) (r tan rx) f (x) =

If f(x) = cos x cos 2x cos 2^2 x cos^(2^3) x .....cos 2^(n-1) x and n gt 1 then f^(1)(pi/2) is

If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n gt 1, then f'(pi/2) is

lim_ (n rarr oo) ((cos x) / (2) * (cos x) / (4) (cos x) / (2 ^ (n)))

lim_ (n rarr oo) cos (x) / (2) * cos (x) / (4) * cos (x) / (8) ...... cos (x) / (2 ^ (n))

Prove that cos^2 x + cos^2 3x + cos^2 5x + ....+ to n terms= 1/2 [ n+ (sin4nx)/(2 sin2x)]