Home
Class 11
MATHS
If u(n) = sin ^(n) theta + cos ^(n) thet...

If `u_(n) = sin ^(n) theta + cos ^(n) theta,` then ` 2 u_(6) -3 u_(4)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(n) = cos^(n) theta + sin^(n) theta then 2u_(6)-3u_(4)=

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If u_(n)=sin^(n)alpha+cos^(n)alpha , then prove that 2u_(6)-3u_(4)+1=0 .

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

If u_(n) = cos^(n) alpha + sin^(n) alpha , then the value of 2 u_(6) - 3 u_(4) +1 is :

If u_(n)=sin^(n)theta+cos^(n)theta, then prove that (u_(5)-u_(7))/(u_(3)-u_(5))=(u_(3))/(u_(1))

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_4-u_6)/(u_2-u_4)=1/2 .

If U_n=2 cosntheta then U_1U_n-U_(n-1) is equal to