Home
Class 12
MATHS
31" .If "x=e^(cos2t)" and "y=e[m" prove ...

31" .If "x=e^(cos2t)" and "y=e[m" prove that "(dy)/(dx)=-(y log x)/(r log7)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)