Home
Class 12
MATHS
Let f(x) = sin(pi[x]) + sin([pi^(2)]x) +...

Let `f(x) = sin(pi[x]) + sin([pi^(2)]x) + cos ([-pi^(2)]x/3) AA x in R`, then `f(pi//4)` is equal to

A

`1//sqrt(2)`

B

`-1//sqrt(2)`

C

`sqrt(2)`

D

`-sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = \sin(\pi [x]) + \sin([\pi^2] x) + \cos\left(-\frac{\pi^2 x}{3}\right) \) at \( x = \frac{\pi}{4} \). ### Step 1: Calculate \( [x] \) for \( x = \frac{\pi}{4} \) The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). \[ x = \frac{\pi}{4} \approx 0.785 \quad \text{(since } \pi \approx 3.14\text{)} \] Thus, \[ [\frac{\pi}{4}] = 0 \] ### Step 2: Substitute \( [x] \) into \( f(x) \) Now substitute \( [x] \) into the function: \[ f\left(\frac{\pi}{4}\right) = \sin(\pi [\frac{\pi}{4}]) + \sin([\pi^2] \cdot \frac{\pi}{4}) + \cos\left(-\frac{\pi^2 \cdot \frac{\pi}{4}}{3}\right) \] This simplifies to: \[ f\left(\frac{\pi}{4}\right) = \sin(\pi \cdot 0) + \sin([\pi^2] \cdot \frac{\pi}{4}) + \cos\left(-\frac{\pi^3}{12}\right) \] ### Step 3: Calculate \( \sin(\pi \cdot 0) \) \[ \sin(0) = 0 \] ### Step 4: Calculate \( [\pi^2] \) Next, we need to find \( [\pi^2] \): \[ \pi^2 \approx 9.87 \quad \Rightarrow \quad [\pi^2] = 9 \] ### Step 5: Substitute \( [\pi^2] \) into the function Now substitute \( [\pi^2] \): \[ f\left(\frac{\pi}{4}\right) = 0 + \sin(9 \cdot \frac{\pi}{4}) + \cos\left(-\frac{\pi^3}{12}\right) \] ### Step 6: Calculate \( \sin(9 \cdot \frac{\pi}{4}) \) \[ 9 \cdot \frac{\pi}{4} = \frac{9\pi}{4} \] To simplify \( \sin\left(\frac{9\pi}{4}\right) \): \[ \frac{9\pi}{4} = 2\pi + \frac{\pi}{4} \quad \Rightarrow \quad \sin\left(\frac{9\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 7: Calculate \( \cos\left(-\frac{\pi^3}{12}\right) \) Since cosine is an even function: \[ \cos\left(-\frac{\pi^3}{12}\right) = \cos\left(\frac{\pi^3}{12}\right) \] ### Step 8: Combine the results Now we can combine everything: \[ f\left(\frac{\pi}{4}\right) = 0 + \frac{1}{\sqrt{2}} + \cos\left(\frac{\pi^3}{12}\right) \] ### Final Result Thus, the final value of \( f\left(\frac{\pi}{4}\right) \) is: \[ f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \cos\left(\frac{\pi^3}{12}\right) \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTIONS ))|30 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTIONS ))|25 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS )|20 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|13 Videos

Similar Questions

Explore conceptually related problems

Let [x]= greatest integer le x and f(x) = cos([pi^(2)]x) + sin([e^(2)]x) then f(pi//4) is equal to

If f(x)=|cos x-sin x|, then f'((pi)/(2)) is equal to

Let f(x)=sin[(pi)/(6)sin((pi)/(2)sin x)] for all x in R

If f(x)=cos x+sin x, find f((pi)/(2))

If f(x)=|cos x-sin x|* then f((pi)/(4)) is

Define f : R to R by f(x) = 4 cos^(4)((x-pi)/(4pi^(2))) - 2 cos((x-pi)/(2pi^(2))) AA x in R If the period of f is kpi^(3) , then k = ……………..

If f(x)=cos x+sin x . find f ((pi)/(2)) .

MCGROW HILL PUBLICATION-SETS, RELATIONS AND FUNCTIONS-EXERCISE (CONCEPT -BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS) )
  1. Let ~ be a relation defined on N xx N as follows: (a,b),(c,d) in N ...

    Text Solution

    |

  2. Let A = {a, b, c} andR = {(a, b), (b, c)}. The minimum number of order...

    Text Solution

    |

  3. Suppose A and B have exactly n elements in common, then the number of ...

    Text Solution

    |

  4. On Z, define R as follows: a, b in Z, aRb if 7|(a^(2) -b^(2)), then ...

    Text Solution

    |

  5. Suppose R is a reflexive and transitive relation on a set A and let S ...

    Text Solution

    |

  6. Let R1 and R2 be equivalence relations on a set A, then R1uuR2 may or ...

    Text Solution

    |

  7. On Z, define R as follows: a,b in Z, aRb if 3|(a^(2) - b^(2)), then ...

    Text Solution

    |

  8. Let f(x) = sin(pi[x]) + sin([pi^(2)]x) + cos ([-pi^(2)]x/3) AA x in R,...

    Text Solution

    |

  9. The domain of f(x)="log"|logx|i s (0,oo) (b) (1,oo) (c) (0,1)uu(1,oo...

    Text Solution

    |

  10. Let /be a function such that 3f(x) + 22f(1/x) = 7x, AA x ne 0, then...

    Text Solution

    |

  11. Let f: R to R be defined by f(x) = 5^(2x)/(5^(2x) + 5), then f(x) + ...

    Text Solution

    |

  12. Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0)...

    Text Solution

    |

  13. If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/...

    Text Solution

    |

  14. Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

    Text Solution

    |

  15. Let f(x) = cos(x) + cos(sqrt(3)x) AA x in R. The number of values of x...

    Text Solution

    |

  16. The domain of f(x) = sqrt((2-|x|)/(3-|x|)) is

    Text Solution

    |

  17. The range of f(x) = sqrt(3x^(2) - 10 x + 12) is

    Text Solution

    |

  18. The domain of f(x) = cos^(-1) {log(2) (1/2x^(2))} is

    Text Solution

    |

  19. Suppose f: R to R be defined by f(x) ={{:(x, if x in Q),(1-x, if x i...

    Text Solution

    |

  20. Let f:[4,infty) to [1,infty) be defined by f(x) = 11^(x(4-x)) AA x ...

    Text Solution

    |