Home
Class 12
MATHS
Let f(x) = cos^(2)x + cos^(2)(x + pi//3)...

Let `f(x) = cos^(2)x + cos^(2)(x + pi//3) + sin x sin (x + pi//3)` and
`g(x) ={{:(1, if x lt 5//4),(2, if 5//4 le x le 7//4),(3, if x gt 7//4):}`,
The number of elements in the range of `(gof)(x)` is …………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) and find the number of elements in the range of the composite function \( g(f(x)) \). ### Step 1: Analyze the function \( f(x) \) The function is given as: \[ f(x) = \cos^2 x + \cos^2\left(x + \frac{\pi}{3}\right) + \sin x \sin\left(x + \frac{\pi}{3}\right) \] Using the sine addition formula, we can simplify \( \sin\left(x + \frac{\pi}{3}\right) \): \[ \sin\left(x + \frac{\pi}{3}\right) = \sin x \cos\frac{\pi}{3} + \cos x \sin\frac{\pi}{3} = \sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2} \] Now, substituting this back into \( f(x) \): \[ f(x) = \cos^2 x + \cos^2\left(x + \frac{\pi}{3}\right) + \sin x \left(\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x\right) \] ### Step 2: Simplify \( f(x) \) Using the identity \( \cos^2\theta = 1 - \sin^2\theta \): \[ \cos^2\left(x + \frac{\pi}{3}\right) = \cos^2 x \cos^2\frac{\pi}{3} - \sin^2 x \sin^2\frac{\pi}{3} = \cos^2 x \cdot \frac{1}{4} - \sin^2 x \cdot \frac{3}{4} \] Thus, \[ f(x) = \cos^2 x + \left(\frac{1}{4} \cos^2 x - \frac{3}{4} \sin^2 x\right) + \frac{1}{2} \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x \] Combining the terms gives: \[ f(x) = \left(1 + \frac{1}{4}\right) \cos^2 x + \left(-\frac{3}{4} + \frac{1}{2}\right) \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x \] \[ = \frac{5}{4} \cos^2 x - \frac{1}{4} \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x \] ### Step 3: Determine the range of \( f(x) \) By analyzing \( f(x) \), we find that it can be expressed in terms of \( \sin^2 x \) and \( \cos^2 x \). The maximum and minimum values of \( f(x) \) can be evaluated, but we can also observe that \( f(x) \) is periodic and bounded. ### Step 4: Analyze the function \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = \begin{cases} 1 & \text{if } x < \frac{5}{4} \\ 2 & \text{if } \frac{5}{4} \leq x \leq \frac{7}{4} \\ 3 & \text{if } x > \frac{7}{4} \end{cases} \] ### Step 5: Find the range of \( g(f(x)) \) Since \( f(x) \) is periodic and bounded, we need to determine where \( f(x) \) falls in relation to the critical points \( \frac{5}{4} \) and \( \frac{7}{4} \). 1. If \( f(x) < \frac{5}{4} \), then \( g(f(x)) = 1 \). 2. If \( \frac{5}{4} \leq f(x) \leq \frac{7}{4} \), then \( g(f(x)) = 2 \). 3. If \( f(x) > \frac{7}{4} \), then \( g(f(x)) = 3 \). ### Step 6: Conclusion Since \( f(x) \) can take values that are either less than \( \frac{5}{4} \), between \( \frac{5}{4} \) and \( \frac{7}{4} \), or greater than \( \frac{7}{4} \), we can conclude that the range of \( g(f(x)) \) consists of the values \( 1, 2, \) and \( 3 \). Thus, the number of elements in the range of \( g(f(x)) \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|50 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTIONS ))|25 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|13 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4))=3 , then (d)/(dx)(gof(x)) =

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

f(x) ={{:(,pi/2+x,x le (-pi)/(4)),(,tan x,(-pi)/(4) lt x lt pi/4),(,pi/2-x,x ge pi/4):} then:

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

MCGROW HILL PUBLICATION-SETS, RELATIONS AND FUNCTIONS-EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS )
  1. Let f(x) = tan^(-1) (sqrt(x+7)) + sec^(-1)(1/(sqrt(x(x+7)+1))), then t...

    Text Solution

    |

  2. Let f : R to R be defined by f(x) = ax + b AA x in R Where a,b in ...

    Text Solution

    |

  3. Suppose A and B are two sets. If the power set of A contains 64 elemen...

    Text Solution

    |

  4. Let a, b, c in R. If f (x) = ax^(2) + bx + c is such that a + b + c = ...

    Text Solution

    |

  5. Let f(x) = cos (ln x) , x gt 0. If f(xy) + f(x/y) = kf(x)f(y) AA x, ...

    Text Solution

    |

  6. Suppose A and B are two finite sets. If the number of relations that c...

    Text Solution

    |

  7. A class has 175 students. The following data shows the number of stude...

    Text Solution

    |

  8. Let f(x) = sin(ln x) AA x gt 0. Suppose f(e^(kpix)) = f(x) AA x gt 0, ...

    Text Solution

    |

  9. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x1))...

    Text Solution

    |

  10. Let [x] greatest integer le x. Define f : R to R by f(x) = cos(5x) cos...

    Text Solution

    |

  11. Let A and B be two finite sets such that n(A) = 20, n(B) = 28 and n(A ...

    Text Solution

    |

  12. Le A = {1,2, 3,4, 5}. Let {1,2,3} and {4, 5} be two equivalence classe...

    Text Solution

    |

  13. Let A = {a, b, c,d). If an equivalence relation R on A has exactly one...

    Text Solution

    |

  14. Let f(x) = cos^(2)x + cos^(2)(x + pi//3) + sin x sin (x + pi//3) and ...

    Text Solution

    |

  15. Let f be an even function defined on R. Suppose f is defined on [0,4] ...

    Text Solution

    |

  16. Let f : R-{1} to R be defined by f(x) =(1+x)/(1-x) AA x in R -{1} th...

    Text Solution

    |

  17. Let f: [0, infty) to R be such that f(16/sqrt(1+sqrt(x))) = x AA x g...

    Text Solution

    |

  18. Let f: N to R be a function satisfying the condition f(1) + f(2)……………....

    Text Solution

    |

  19. The number of integers lying in the range of f(x) = 15/(12-5 sinx), x ...

    Text Solution

    |

  20. Let P be a polynomial satisfying the equation P(x) P(1/x) = P(x) + P...

    Text Solution

    |