Home
Class 12
MATHS
Two non-integer roots of ((3x -1)/( 2x...

Two non-integer roots of
`((3x -1)/( 2x+3))^(4) - 5 ((3x - 1)/(2x + 3))^(2) + 4 = 0" " ` (1) are

A

`- 5//7, - 2//5`

B

`- 2//5, 7//5`

C

`5//7, 7//5`

D

`-2//5, 3//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \left(\frac{3x - 1}{2x + 3}\right)^{4} - 5 \left(\frac{3x - 1}{2x + 3}\right)^{2} + 4 = 0, \] we can use a substitution method. Let \[ t = \left(\frac{3x - 1}{2x + 3}\right)^{2}. \] This transforms our equation into: \[ t^{2} - 5t + 4 = 0. \] ### Step 1: Factor the quadratic equation We can factor the quadratic equation: \[ t^{2} - 5t + 4 = (t - 1)(t - 4) = 0. \] ### Step 2: Find the values of t Setting each factor to zero gives us: 1. \(t - 1 = 0 \Rightarrow t = 1\) 2. \(t - 4 = 0 \Rightarrow t = 4\) ### Step 3: Substitute back to find x Now we substitute back for \(t\) in terms of \(x\): 1. For \(t = 1\): \[ \left(\frac{3x - 1}{2x + 3}\right)^{2} = 1 \Rightarrow \frac{3x - 1}{2x + 3} = \pm 1. \] - Case 1: \[ \frac{3x - 1}{2x + 3} = 1 \Rightarrow 3x - 1 = 2x + 3 \Rightarrow x = 4. \] - Case 2: \[ \frac{3x - 1}{2x + 3} = -1 \Rightarrow 3x - 1 = -2x - 3 \Rightarrow 5x = -2 \Rightarrow x = -\frac{2}{5}. \] 2. For \(t = 4\): \[ \left(\frac{3x - 1}{2x + 3}\right)^{2} = 4 \Rightarrow \frac{3x - 1}{2x + 3} = \pm 2. \] - Case 1: \[ \frac{3x - 1}{2x + 3} = 2 \Rightarrow 3x - 1 = 4x + 6 \Rightarrow -x = 7 \Rightarrow x = -7. \] - Case 2: \[ \frac{3x - 1}{2x + 3} = -2 \Rightarrow 3x - 1 = -4x - 6 \Rightarrow 7x = -5 \Rightarrow x = -\frac{5}{7}. \] ### Step 4: Collect the non-integer roots The solutions we found are: 1. \(x = 4\) (integer) 2. \(x = -\frac{2}{5}\) (non-integer) 3. \(x = -7\) (integer) 4. \(x = -\frac{5}{7}\) (non-integer) Thus, the two non-integer roots are: \[ x = -\frac{2}{5} \quad \text{and} \quad x = -\frac{5}{7}. \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Level 2 (Straight Objective Type Questions))|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numerical Answer Type Questions)|18 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos

Similar Questions

Explore conceptually related problems

The number of roots of 81 ((2x - 5)/( 3x +1))^(4) - 45 ((2x - 5)/(3x + 1))^(2) + 4 = 0 , x ne 1//3 is

Two non-integer roots of the equation (x^(2) + 3x)^(2) - (x^(2) + 3x) - 6 = 0 " " (1) are

The non -integral roots of x^(4) - 3x^(3) - 2x^(2) + 3x + 1=0" " (1) are

((4x-3) / (2x + 1))-10 ((2x + 1) / (4x-3)) = 3, x! =-1/2, 3/4

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

(b) Find the square root of 4x^(4) - 4x^(3) + 5x^(2) -2x +1

A root of the equation 4x^(3)+2x^(2)-3x-1=0 is

If the roots of 3x^(3)-22x^(2)+48x-32=0 are in H.P then the roots are (1)/(4), (1)/(2), (3)/(4) 4, 2 ,(4)/(3) (1)/(3) ,(1)/(2) ,(2)/(3) 3 ,2 ,(3)/(2)

MCGROW HILL PUBLICATION-QUADRATIC EQUATIONS-Solved Examples (Level 1 ( Single Correct Answer Type Questions)
  1. Suppose k in R and the quadratic equation x^(2) - (k - 3) x + k = 0 ha...

    Text Solution

    |

  2. Two non-integer roots of the equation (x^(2) + 3x)^(2) - (x^(2) + ...

    Text Solution

    |

  3. Two non-integer roots of ((3x -1)/( 2x+3))^(4) - 5 ((3x - 1)/(2x + 3...

    Text Solution

    |

  4. Sum of the roots of the equation is 4^(x)- 3 (2 ^(x+3)) + 128 = 0

    Text Solution

    |

  5. The only real value of x satisfying the equation is 6 sqrt((x)/(x +...

    Text Solution

    |

  6. 2(x^(2)+(1)/(x^(2)))-9(x+(1)/(x))+14=0

    Text Solution

    |

  7. The non -integral roots of x^(4) - 3x^(3) - 2x^(2) + 3x + 1=0" ...

    Text Solution

    |

  8. If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roo...

    Text Solution

    |

  9. Number of real solution of (x-1)(x+1)(2x+1)(2x-3)=15 (1) is

    Text Solution

    |

  10. if 2 = I sqrt3 be a root of the equation x^(2) + px + q =0, where p ...

    Text Solution

    |

  11. The number of solutions of sqrt(3x^(2)+x+5)=x-3 is

    Text Solution

    |

  12. The number of solutions of sqrt(4 - x) + sqrt(x + 9) = 5" " (1) i...

    Text Solution

    |

  13. Suppose a in R and alpha, beta are roots of x^(2) +4 ax + 5 a^(2) - 6a...

    Text Solution

    |

  14. Find the value of a for which one root of the quadratic equation (a^2-...

    Text Solution

    |

  15. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  16. If f(x)=x^(2)+2bx+2c^(2)and g(x)=-x^(2)-2cx+b^(2), such that minf(x)gt...

    Text Solution

    |

  17. If a,b are roots of the equation x^2 + qx + 1 = 0 and c,d are roots of...

    Text Solution

    |

  18. Solve for x: 4^(x) - 3^(x-1/2)=3^(x+1/2)-2^(2x-1).

    Text Solution

    |

  19. If x^2+2ax+10-3a gt0 for all x in R then

    Text Solution

    |

  20. The number of solutions of sqrt(x +1) - sqrt(x - 1) = 1" " (x in ...

    Text Solution

    |