Home
Class 12
MATHS
Suppose a is an integer and x(1) and x(2...

Suppose a is an integer and `x_(1) and x_(2)` are positive real roots of `x^(2) + (2a - 1) x + a^(2) = 0`, then value of `|sqrt(x_(1))-sqrt(x_(2))|` is

A

1

B

2

C

a

D

1-4a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\sqrt{x_1} - \sqrt{x_2}|\) given that \(x_1\) and \(x_2\) are the positive real roots of the quadratic equation \(x^2 + (2a - 1)x + a^2 = 0\). ### Step-by-Step Solution: 1. **Identify the coefficients of the quadratic equation:** The given quadratic equation is: \[ x^2 + (2a - 1)x + a^2 = 0 \] Here, \(A = 1\), \(B = 2a - 1\), and \(C = a^2\). 2. **Use the quadratic formula to find the roots:** The roots of a quadratic equation \(Ax^2 + Bx + C = 0\) can be found using the formula: \[ x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] Substituting the values of \(A\), \(B\), and \(C\): \[ x_1, x_2 = \frac{-(2a - 1) \pm \sqrt{(2a - 1)^2 - 4 \cdot 1 \cdot a^2}}{2 \cdot 1} \] 3. **Calculate the discriminant:** The discriminant \(D\) is given by: \[ D = (2a - 1)^2 - 4a^2 \] Simplifying this: \[ D = 4a^2 - 4a + 1 - 4a^2 = -4a + 1 \] 4. **Roots of the quadratic equation:** The roots can be expressed as: \[ x_1, x_2 = \frac{1 - 2a \pm \sqrt{1 - 4a}}{2} \] 5. **Calculate the values of \(\sqrt{x_1}\) and \(\sqrt{x_2}\):** We need to find \(|\sqrt{x_1} - \sqrt{x_2}|\). Using the identity: \[ |\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{|\sqrt{x_1} + \sqrt{x_2}|} \] 6. **Find \(x_1 + x_2\) and \(x_1 - x_2\):** From Vieta's formulas: - \(x_1 + x_2 = -\frac{B}{A} = 1 - 2a\) - \(x_1 x_2 = \frac{C}{A} = a^2\) Now, to find \(x_1 - x_2\): \[ x_1 - x_2 = \sqrt{D} = \sqrt{-4a + 1} \] 7. **Calculate \(|\sqrt{x_1} - \sqrt{x_2}|\):** Substituting into the earlier expression: \[ |\sqrt{x_1} - \sqrt{x_2}| = \frac{\sqrt{-4a + 1}}{|\sqrt{x_1} + \sqrt{x_2}|} \] We know: \[ \sqrt{x_1} + \sqrt{x_2} = \sqrt{(x_1 + x_2) + 2\sqrt{x_1 x_2}} = \sqrt{(1 - 2a) + 2a} = \sqrt{1} \] Thus: \[ |\sqrt{x_1} + \sqrt{x_2}| = 1 \] 8. **Final Calculation:** Therefore: \[ |\sqrt{x_1} - \sqrt{x_2}| = \sqrt{-4a + 1} \] 9. **Conclusion:** Since \(a\) is an integer, we find that the expression simplifies to: \[ |\sqrt{x_1} - \sqrt{x_2}| = 1 \] ### Final Answer: \[ |\sqrt{x_1} - \sqrt{x_2}| = 1 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Level 2 (Straight Objective Type Questions))|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numerical Answer Type Questions)|18 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos

Similar Questions

Explore conceptually related problems

If x=1+sqrt(2), then the value of (x-(1)/(x))^(2) is

If x = (2ab)/(b^2+1) then value of (sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sqrt(a-x)) is

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1) ?

If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)) ?

If x*y=sqrt(x^2+y^2) the value of (1*2 sqrt 2)(1*-2 sqrt 2) is

The roots of the equation x^(2) -2 sqrt(2) x + 1 = 0 are

a+1=2sqrt(a)x then (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

MCGROW HILL PUBLICATION-QUADRATIC EQUATIONS-Solved Examples (Level 1 ( Single Correct Answer Type Questions)
  1. The value of 'k' for which one root of the equation x^2 - (k+1) x + k^...

    Text Solution

    |

  2. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  3. Suppose a is an integer and x(1) and x(2) are positive real roots of ...

    Text Solution

    |

  4. If a, b are two real number satisfying the relation 2a^(2) - 3a - 1 =...

    Text Solution

    |

  5. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  6. Suppose a, b, c are the lengths of three sides of a Delta ABC , a gt b...

    Text Solution

    |

  7. A root of the equation (a + b)(ax + b)(a - bx) = (a^2x - b^2)(a + bx) ...

    Text Solution

    |

  8. Q. Let p and q real number such that p!= 0,p^2!=q and p^2!=-q. if alph...

    Text Solution

    |

  9. Suppose a, b, in R . If the roots of x^(2) - ax + b = 0 are real and d...

    Text Solution

    |

  10. If a is the minimum root of the equation x^(2) - 3|x|- 2 = 0 , then va...

    Text Solution

    |

  11. Let f(x) = (x^(2) - 2x + 3)/( x^(2) - 2x - 8) , x in R - {-2, 4} The r...

    Text Solution

    |

  12. Suppose a, b, care three non-zero real numbers. The equation x^2+(a+b+...

    Text Solution

    |

  13. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  14. The equation e^(sinx)-e^(-sinx)-4=0 has (A) infinite number of real ro...

    Text Solution

    |

  15. If x^(2) - 3x + 2 is a factor of x^(4) - ax^(2) + b then the equatio...

    Text Solution

    |

  16. Let for a != a1 != 0 , f(x)=ax^2+bx+c ,g(x)=a1x^2+b1x+c1 and p(x) = f(...

    Text Solution

    |

  17. If a + b + c = 0 and a ne c then the roots of the equation (b + c - a)...

    Text Solution

    |

  18. if alpha&betaare the roots of the quadratic equation ax^2 + bx + c = 0...

    Text Solution

    |

  19. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  20. The number of real roots of (x+3)^4+(x+5)^4=16

    Text Solution

    |