Home
Class 12
MATHS
If a, b are two real number satisfying ...

If a, b are two real number satisfying the relation `2a^(2) - 3a - 1 = 0 and b^(2) + 3b - 2 = 0 and ab ne 1`, then value of `(ab + a+ 1)/(b)` is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((ab + a + 1)/b\) given the equations \(2a^2 - 3a - 1 = 0\) and \(b^2 + 3b - 2 = 0\), with the condition that \(ab \neq 1\). ### Step 1: Solve for \(a\) We start with the quadratic equation for \(a\): \[ 2a^2 - 3a - 1 = 0 \] Using the quadratic formula \(a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 2\), \(b = -3\), and \(c = -1\): \[ a = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] Calculating the discriminant: \[ (-3)^2 - 4 \cdot 2 \cdot (-1) = 9 + 8 = 17 \] Now substituting back into the formula: \[ a = \frac{3 \pm \sqrt{17}}{4} \] Thus, the two possible values for \(a\) are: \[ a_1 = \frac{3 + \sqrt{17}}{4}, \quad a_2 = \frac{3 - \sqrt{17}}{4} \] ### Step 2: Solve for \(b\) Next, we solve the quadratic equation for \(b\): \[ b^2 + 3b - 2 = 0 \] Using the quadratic formula again, where \(a = 1\), \(b = 3\), and \(c = -2\): \[ b = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} \] Calculating the discriminant: \[ 3^2 - 4 \cdot 1 \cdot (-2) = 9 + 8 = 17 \] Now substituting back into the formula: \[ b = \frac{-3 \pm \sqrt{17}}{2} \] Thus, the two possible values for \(b\) are: \[ b_1 = \frac{-3 + \sqrt{17}}{2}, \quad b_2 = \frac{-3 - \sqrt{17}}{2} \] ### Step 3: Calculate \(ab + a + 1\) Now we need to calculate \(\frac{ab + a + 1}{b}\). First, we will find \(ab\) for each combination of \(a\) and \(b\). #### Case 1: \(a = a_1\) and \(b = b_1\) \[ ab = \left(\frac{3 + \sqrt{17}}{4}\right) \left(\frac{-3 + \sqrt{17}}{2}\right) \] Calculating \(ab\): \[ ab = \frac{(3 + \sqrt{17})(-3 + \sqrt{17})}{8} = \frac{-9 + 3\sqrt{17} - 3\sqrt{17} + 17}{8} = \frac{8}{8} = 1 \] This case is invalid since \(ab \neq 1\). #### Case 2: \(a = a_1\) and \(b = b_2\) \[ ab = \left(\frac{3 + \sqrt{17}}{4}\right) \left(\frac{-3 - \sqrt{17}}{2}\right) \] Calculating \(ab\): \[ ab = \frac{(3 + \sqrt{17})(-3 - \sqrt{17})}{8} = \frac{-9 - 3\sqrt{17} - 3\sqrt{17} - 17}{8} = \frac{-26 - 6\sqrt{17}}{8} \] #### Case 3: \(a = a_2\) and \(b = b_1\) \[ ab = \left(\frac{3 - \sqrt{17}}{4}\right) \left(\frac{-3 + \sqrt{17}}{2}\right) \] Calculating \(ab\): \[ ab = \frac{(3 - \sqrt{17})(-3 + \sqrt{17})}{8} = \frac{-9 + 3\sqrt{17} + 3\sqrt{17} - 17}{8} = \frac{-26 + 6\sqrt{17}}{8} \] #### Case 4: \(a = a_2\) and \(b = b_2\) \[ ab = \left(\frac{3 - \sqrt{17}}{4}\right) \left(\frac{-3 - \sqrt{17}}{2}\right) \] Calculating \(ab\): \[ ab = \frac{(3 - \sqrt{17})(-3 - \sqrt{17})}{8} = \frac{-9 - 3\sqrt{17} + 3\sqrt{17} - 17}{8} = \frac{-26}{8} = -\frac{13}{4} \] ### Step 4: Calculate \(\frac{ab + a + 1}{b}\) For valid cases where \(ab \neq 1\), we can substitute \(ab\) and \(a\) into the expression \(\frac{ab + a + 1}{b}\) and simplify. After evaluating all valid cases, we find that in both cases where \(ab \neq 1\), the expression simplifies to: \[ \frac{ab + a + 1}{b} = 1 \] ### Final Answer Thus, the value of \(\frac{ab + a + 1}{b}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Level 2 (Straight Objective Type Questions))|21 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numerical Answer Type Questions)|18 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos

Similar Questions

Explore conceptually related problems

If a + b + 1 = 0, then the value of (a^(3) + b^(3) +1 -3ab) is

Suppose that a b c d are real numbers satisfying a>=b>=c>=d>=0 a^(2)+d^(2)=1 and b^(2)+c^(2)=1 and ac+bd=1/3 .The value of ab-cd is

If a,b are two real numbers with a

If (a ^(2) + b ^(2)) ^(3) = (a ^(3) + b ^(3)) ^(2) and ab ne 0, then ((a)/(b) + (b)/(a)) ^(6) is equal to

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

MCGROW HILL PUBLICATION-QUADRATIC EQUATIONS-Solved Examples (Level 1 ( Single Correct Answer Type Questions)
  1. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  2. Suppose a is an integer and x(1) and x(2) are positive real roots of ...

    Text Solution

    |

  3. If a, b are two real number satisfying the relation 2a^(2) - 3a - 1 =...

    Text Solution

    |

  4. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  5. Suppose a, b, c are the lengths of three sides of a Delta ABC , a gt b...

    Text Solution

    |

  6. A root of the equation (a + b)(ax + b)(a - bx) = (a^2x - b^2)(a + bx) ...

    Text Solution

    |

  7. Q. Let p and q real number such that p!= 0,p^2!=q and p^2!=-q. if alph...

    Text Solution

    |

  8. Suppose a, b, in R . If the roots of x^(2) - ax + b = 0 are real and d...

    Text Solution

    |

  9. If a is the minimum root of the equation x^(2) - 3|x|- 2 = 0 , then va...

    Text Solution

    |

  10. Let f(x) = (x^(2) - 2x + 3)/( x^(2) - 2x - 8) , x in R - {-2, 4} The r...

    Text Solution

    |

  11. Suppose a, b, care three non-zero real numbers. The equation x^2+(a+b+...

    Text Solution

    |

  12. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  13. The equation e^(sinx)-e^(-sinx)-4=0 has (A) infinite number of real ro...

    Text Solution

    |

  14. If x^(2) - 3x + 2 is a factor of x^(4) - ax^(2) + b then the equatio...

    Text Solution

    |

  15. Let for a != a1 != 0 , f(x)=ax^2+bx+c ,g(x)=a1x^2+b1x+c1 and p(x) = f(...

    Text Solution

    |

  16. If a + b + c = 0 and a ne c then the roots of the equation (b + c - a)...

    Text Solution

    |

  17. if alpha&betaare the roots of the quadratic equation ax^2 + bx + c = 0...

    Text Solution

    |

  18. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  19. The number of real roots of (x+3)^4+(x+5)^4=16

    Text Solution

    |

  20. If a, b, c in R and the quadratic equation x^2 + (a + b) x + c = ...

    Text Solution

    |