Home
Class 12
MATHS
Suppose alpha, beta, gamma are roots of...

Suppose `alpha, beta, gamma ` are roots of `x^(3) + qx + r = 0 ` . If ` (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2)` = - e, then q = ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start with the given equation and the expression involving the roots. ### Step 1: Understanding the Roots The roots of the polynomial \( x^3 + qx + r = 0 \) are \( \alpha, \beta, \gamma \). According to Vieta's formulas, we know: - \( \alpha + \beta + \gamma = 0 \) (since there is no \( x^2 \) term) - \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - \( \alpha\beta\gamma = -r \) ### Step 2: Expanding the Given Expression We need to evaluate the expression: \[ (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 \] Expanding each term, we have: \[ (\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 \] \[ (\beta - \gamma)^2 = \beta^2 - 2\beta\gamma + \gamma^2 \] \[ (\gamma - \alpha)^2 = \gamma^2 - 2\gamma\alpha + \alpha^2 \] Adding these together: \[ (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 = 2(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] ### Step 3: Using the Relationship We know from the problem statement that: \[ (\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2 = -e \] Thus, we can set up the equation: \[ 2(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = -e \] ### Step 4: Expressing \( \alpha^2 + \beta^2 + \gamma^2 \) Using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Since \( \alpha + \beta + \gamma = 0 \): \[ \alpha^2 + \beta^2 + \gamma^2 = 0 - 2q = -2q \] ### Step 5: Substituting Back Substituting this back into our equation: \[ 2(-2q) - 2q = -e \] This simplifies to: \[ -4q - 2q = -e \] \[ -6q = -e \] Thus, we find: \[ q = \frac{e}{6} \] ### Conclusion The value of \( q \) is: \[ \boxed{\frac{e}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/JEE main papers|64 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Exercise ( Level 2 (single correct answer type questions))|20 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma, delta are roots of x^(4) + px^(3) + qx^(2) + rx + s = 0 then sum alpha^(2) beta gamma =

If alpha,beta,gamma are the roots of the equation x^(3)+4x+1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha, beta, gamma are the roots of x^3+px^2+qx+r=0 then alpha^(2)(beta+gamma)+beta^(2)(gamma+alpha)+gamma^(2)(alpha+beta)=

If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

If alpha, beta, gamma are the roots of x^(3)-7x+6=0 and the equation whose roots are (alpha+beta)^(2),(beta+gamma)^(2),(gamma+alpha)^(2) is x(x-7)^2 = k then k = ?

If alpha,beta,gamma are the roots of x^(3)-2x^(2)+3x-4=0 then the value of alpha^(2)beta^(2)+beta^(2)gamma^(2)+gamma^(2)alpha^(2) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha,beta,gamma are the roots of x^(3)+px^(2)+qx+r=0 then alpha^(3)+beta^(3)+gamma^(3)=

MCGROW HILL PUBLICATION-QUADRATIC EQUATIONS-Exercise ( Level 2 (Numerical answer type questions))
  1. Let alpha , beta be non-real roots of (x^(2) + x - 3) (x^(2) + x - 2) ...

    Text Solution

    |

  2. Suppose alpha, beta are irrational roots of x^(5) - 5x^(4) + 9x^(3) +...

    Text Solution

    |

  3. Suppose alpha, beta, gamma are roots of x^(3) + qx + r = 0 . If (al...

    Text Solution

    |

  4. Suppose f(x) = (x - a) (x - b) - (1)/(2) (b - a), where a b in R . If ...

    Text Solution

    |

  5. Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) l...

    Text Solution

    |

  6. If a, b gt 0, then the least value of (a^(2) - ab + b^(2))/((a + b)^(2...

    Text Solution

    |

  7. Let p, q be integers and let alpha , beta be the roots of the equatio...

    Text Solution

    |

  8. Let alpha , beta be roots of x^(2) + x +1 = 0, then the equation whos...

    Text Solution

    |

  9. Let S = {x in R : sqrt(x^(2) + 19 x ) - sqrt(x) + sqrt(x + 19) = x + 6...

    Text Solution

    |

  10. Suppose a, b in Q and 3 - sqrt(5) is a root of x^(2) + ax + b = 0 , "t...

    Text Solution

    |

  11. If y = x + (1)/(x) , (x ne 0) reduces the polynomial (x^(2) -5x + 1) (...

    Text Solution

    |

  12. Suppose, a, b, c in R, a gt 0. Let alpha , beta be roots of ax^(2) + b...

    Text Solution

    |

  13. If the equations x^(5) + ax + 1= 0 and x^(6) + ax^(2) + 1= 0 have a c...

    Text Solution

    |

  14. If 3 + 4i is a root of x^(2) + px + q = 0, where p, q in R , then (1)/...

    Text Solution

    |

  15. Suppose p ne q and difference between the roots of x^(2) + 2px + q = 0...

    Text Solution

    |

  16. If the equation formed by decreasing each root of ax^(2) + bx + c = 0"...

    Text Solution

    |

  17. Suppose a, b, c in R, a ne 0 .If one root of ax^(2) + bx + c = 0 is th...

    Text Solution

    |

  18. Let a, b be roots of x^(2) + 2x + 5 . 71 = 0. "Let" A(n) be alpha^(n) ...

    Text Solution

    |

  19. Let f(x) = (x^(2) + x + 1)/(x^(2) + 3 x + 3) x x in R . Let m be the m...

    Text Solution

    |