Home
Class 12
MATHS
If a, b gt 0, then the least value of (a...

If `a, b gt 0`, then the least value of `(a^(2) - ab + b^(2))/((a + b)^(2))` is ______

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the expression \(\frac{a^2 - ab + b^2}{(a + b)^2}\) for \(a, b > 0\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{a^2 - ab + b^2}{(a + b)^2} \] ### Step 2: Simplify the numerator Notice that we can rewrite the numerator \(a^2 - ab + b^2\) as follows: \[ a^2 - ab + b^2 = a^2 + b^2 - ab \] We will also use the identity \(a^2 + b^2 = (a + b)^2 - 2ab\). Thus, we have: \[ a^2 - ab + b^2 = (a + b)^2 - 2ab - ab = (a + b)^2 - 3ab \] ### Step 3: Substitute back into the expression Now substituting back into our original expression gives: \[ \frac{(a + b)^2 - 3ab}{(a + b)^2} \] ### Step 4: Split the fraction This can be split into two parts: \[ 1 - \frac{3ab}{(a + b)^2} \] ### Step 5: Analyze the term \(\frac{ab}{(a + b)^2}\) Let \(x = \frac{a}{b}\). Then we can express \(ab\) in terms of \(x\) and \(b\): \[ ab = b^2 \cdot x \] Thus, we can rewrite \(\frac{ab}{(a + b)^2}\) as: \[ \frac{ab}{(a + b)^2} = \frac{bx}{(b(x + 1))^2} = \frac{x}{b(x + 1)^2} \] ### Step 6: Use AM-GM inequality By the AM-GM inequality, we know: \[ \frac{a + b}{2} \geq \sqrt{ab} \implies \left(\frac{a + b}{2}\right)^2 \geq ab \implies \frac{(a + b)^2}{4} \geq ab \] Thus, we have: \[ \frac{ab}{(a + b)^2} \leq \frac{1}{4} \] ### Step 7: Substitute back into the expression Substituting this back, we find: \[ 1 - 3 \cdot \frac{ab}{(a + b)^2} \geq 1 - 3 \cdot \frac{1}{4} = 1 - \frac{3}{4} = \frac{1}{4} \] ### Step 8: Conclusion Thus, the least value of the expression \(\frac{a^2 - ab + b^2}{(a + b)^2}\) is: \[ \frac{1}{4} \] ### Final Answer The least value of \(\frac{a^2 - ab + b^2}{(a + b)^2}\) is \(\frac{1}{4}\). ---
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/JEE main papers|64 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from previous Years. B - architecture entrance examination papers|16 Videos
  • QUADRATIC EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Exercise ( Level 2 (single correct answer type questions))|20 Videos
  • PROGRESSIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|25 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos

Similar Questions

Explore conceptually related problems

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

If a+b+c=0, then the value of ((a+b)^(2))/(ab)+((b+c)^(2))/(bc)+((c+a)^(2))/(ca) is

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?

MCGROW HILL PUBLICATION-QUADRATIC EQUATIONS-Exercise ( Level 2 (Numerical answer type questions))
  1. Let alpha , beta be non-real roots of (x^(2) + x - 3) (x^(2) + x - 2) ...

    Text Solution

    |

  2. Suppose alpha, beta are irrational roots of x^(5) - 5x^(4) + 9x^(3) +...

    Text Solution

    |

  3. Suppose alpha, beta, gamma are roots of x^(3) + qx + r = 0 . If (al...

    Text Solution

    |

  4. Suppose f(x) = (x - a) (x - b) - (1)/(2) (b - a), where a b in R . If ...

    Text Solution

    |

  5. Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) l...

    Text Solution

    |

  6. If a, b gt 0, then the least value of (a^(2) - ab + b^(2))/((a + b)^(2...

    Text Solution

    |

  7. Let p, q be integers and let alpha , beta be the roots of the equatio...

    Text Solution

    |

  8. Let alpha , beta be roots of x^(2) + x +1 = 0, then the equation whos...

    Text Solution

    |

  9. Let S = {x in R : sqrt(x^(2) + 19 x ) - sqrt(x) + sqrt(x + 19) = x + 6...

    Text Solution

    |

  10. Suppose a, b in Q and 3 - sqrt(5) is a root of x^(2) + ax + b = 0 , "t...

    Text Solution

    |

  11. If y = x + (1)/(x) , (x ne 0) reduces the polynomial (x^(2) -5x + 1) (...

    Text Solution

    |

  12. Suppose, a, b, c in R, a gt 0. Let alpha , beta be roots of ax^(2) + b...

    Text Solution

    |

  13. If the equations x^(5) + ax + 1= 0 and x^(6) + ax^(2) + 1= 0 have a c...

    Text Solution

    |

  14. If 3 + 4i is a root of x^(2) + px + q = 0, where p, q in R , then (1)/...

    Text Solution

    |

  15. Suppose p ne q and difference between the roots of x^(2) + 2px + q = 0...

    Text Solution

    |

  16. If the equation formed by decreasing each root of ax^(2) + bx + c = 0"...

    Text Solution

    |

  17. Suppose a, b, c in R, a ne 0 .If one root of ax^(2) + bx + c = 0 is th...

    Text Solution

    |

  18. Let a, b be roots of x^(2) + 2x + 5 . 71 = 0. "Let" A(n) be alpha^(n) ...

    Text Solution

    |

  19. Let f(x) = (x^(2) + x + 1)/(x^(2) + 3 x + 3) x x in R . Let m be the m...

    Text Solution

    |