Home
Class 13
MATHS
" The value of "lim(x rarr0)(sin x+log(1...

" The value of "lim_(x rarr0)(sin x+log(1-x))/(x^(2))" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin log(1-x))/(x)

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =

lim_(x rarr 0) (sin x + log (1-x))/(x^(2)) is :

lim_(x rarr0)(sin log(1+x))/(x) =1

lim_(x rarr0)(xe^(x)-log(1+x))/(x^(2)) equals

lim_(x rarr0)(sin(x^(2)-x))/(x)

lim_(x rarr0)(sin x)/(x)=1

The value of lim_(x rarr0)[((sin(|x|))/(x)] is

lim_(x rarr0)[(sin x sin^(-1)x-x^(2))/(x^(6))] equals

lim_(x rarr0)(log(1-(x)/(2)))/(x)