Home
Class 12
MATHS
Prove that sin^(2)24^(@)-sin^(2)6^(@)...

Prove that `sin^(2)24^(@)-sin^(2)6^(@)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)12^(@)+sin^(2)21^(@)+sin^(2)39^(@)+sin^(2)48^(@)=1+sin^(2)9^(@)+sin^(2)18^(@)

sin^(2)24^(@)-sin^(2)6^(@) is equal to

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

Prove that: (i) "sin"^(2)24^(@)-"sin"^(2)6^(@)=(1)/(8)(sqrt(5)-1) (ii) "tan"9^(@)-"tan"27^(@)-"tan"63^(@)+"tan"81^(@)=4 .

Prove that 2sin2^(@)+4sin4^(@)+6sin6^(@)+...+180sin180^(@)=90cot1^(@)

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8