Home
Class 12
MATHS
" 24."tan^(-1)x+cot^(-1)x=?...

" 24."tan^(-1)x+cot^(-1)x=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

cot(tan^(-1)x+cot^(-1)x)

Prove that: tan^(-1)(x)=2tan^(-1)(cosec tan^(-1)x-tan cot^(-1)x)

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) then (dy)/(dx)=