Home
Class 12
MATHS
If the circle x^(2) +y^(2) + 2gx + 2fy ...

If the circle ` x^(2) +y^(2) + 2gx + 2fy + c = 0 ` bisects the circumference of the circle
` x^(2) +y^(2) + 2g'x + 2f'y + c' = 0 ` , them the length of the common chord of these two circles is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x^(2) + y^(2) + 4x -22y + c = 0 bisects the circumference of the circle x^(2) + y^(2) - 2x + 8y - d = 0 , then c + d =

If the circle x^(2)+y^(2)+4x+22y+c=0 bisects the circumference of the circle x^(2)+y^(2)-2x+8y-d=0 then c+d

If the circle x^(2)+y^(2)-2x-2y-1=0 bisects the circumference of the circle x^(2)+y^(2)=1 then the length of the common chord of the circles is

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g'x +2f'y+c'=0 , then :

If the circle x^(2)+y^(2)+2gx+2fy+c=0 bisects the circumference of the circle x^(2)+y^(2)+2g'x+2f'y+c'=0 then prove that 2g'(g-g')+2f'(f-f')=c-c'