Home
Class 12
MATHS
" (i) "sin^(-1)((x)/(sqrt(x^(2)+a^(2))))...

" (i) "sin^(-1)((x)/(sqrt(x^(2)+a^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

Differentiate sin^(-1)((x)/(sqrt(x^(2)+a^(2)))) with respect to x:

Write the following functions in the simplest form: sin^(-1){(x)/(sqrt(x^(2)+a^(2)))}( ii) cos^(-1){(x)/(sqrt(x^(2)+a^(2)))}

Differentiate sin^(-1){(x)/(sqrt(x^(2)+a^(2)))} with respect to x

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Show that, (d)/(dx) [(x)/(2) sqrt(a^(2)-x^(2)) +(a^(2))/(2) "sin"^(-1) (x)/(a)]=sqrt(a^(2)-x^(2))

Show that (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)"sin"^(-1)(x)/(a)]=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)(x)/(a)}=sqrt(a^(2)-x^(2))